mirror of
https://github.com/nikdoof/dropbot.git
synced 2025-12-19 04:39:26 +00:00
Added jump route calculation support.
This commit is contained in:
125
dropbot/map.py
125
dropbot/map.py
@@ -42,9 +42,21 @@ base_range = {
|
||||
'blackops': 3.5,
|
||||
}
|
||||
|
||||
isotope_usage = {
|
||||
'carrier': 1000,
|
||||
'dreadnought': 1000,
|
||||
'industrial': 1000,
|
||||
'jumpfreighter': 3100,
|
||||
'supercarrier': 1000,
|
||||
'titan': 1000,
|
||||
'blackops': 400,
|
||||
}
|
||||
|
||||
|
||||
EVE_LY = 9460000000000000 # EVE's definition of a ly in KM
|
||||
|
||||
def calc_distance(sys1, sys2):
|
||||
"""Calculate the distance in light years between two sets of 3d coordinates"""
|
||||
EVE_LY = 9460000000000000 # EVE's definition of a ly in KM
|
||||
return math.sqrt(sum((a - b)**2 for a, b in zip(sys1, sys2))) / EVE_LY
|
||||
|
||||
def hull_to_range(hull, jdc_skill):
|
||||
@@ -125,11 +137,99 @@ class Map(networkx.Graph):
|
||||
g = networkx.Graph(data=[(u, v) for u, v, d in self.edges_iter(data=True) if d['link_type'] == 'gate' or d['link_type'] == 'bridge'])
|
||||
return networkx.astar_path(self, source, destination)
|
||||
|
||||
def route_jump(self, source, destination, range=None, hull=None, ship_class=None):
|
||||
"""Route between two systems using jumps"""
|
||||
g = networkx.Graph(data=[(u, v) for u, v, d in self.edges_iter(data=True) if d['link_type'] == 'jump' and d['weight'] <= range])
|
||||
return networkx.dijkstra_path(g, source, destination)
|
||||
def _route_jump_fast(self, source, destination, range=None, hull=None, ship_class=None, station_only=False, avoid_systems=[]):
|
||||
"""A fast but error prone route calculation between two systems using jumps"""
|
||||
print source, destination
|
||||
route = [source]
|
||||
current_system = source
|
||||
while not destination in route:
|
||||
next_distance = None
|
||||
next_system = None
|
||||
# Iterate through jump neighbour systems to find the best candidate
|
||||
for system, system_distance in self.neighbors_jump(current_system, range, hull, ship_class):
|
||||
if system['security'] >= 0.45:
|
||||
continue
|
||||
if station_only and not system['station']:
|
||||
continue
|
||||
if system['system_id'] in avoid_systems:
|
||||
continue
|
||||
if system['system_id'] == destination:
|
||||
route.append(destination)
|
||||
return route
|
||||
|
||||
# Use heuristics to identify the best candidate (one that gets us closest to the target)
|
||||
distance_to_target = self.system_distance(system['system_id'], destination)
|
||||
if distance_to_target < next_distance or not next_distance:
|
||||
next_distance = distance_to_target
|
||||
next_system = system['system_id']
|
||||
route.append(next_system)
|
||||
current_system = next_system
|
||||
|
||||
def route_jump(self, source, destination, range=None, hull=None, ship_class=None, station_only=False, avoid_systems=[]):
|
||||
"""Calculate a jump route between two systems"""
|
||||
closed = set()
|
||||
open = set([source])
|
||||
route = {}
|
||||
g_score = {source: 0}
|
||||
f_score = {source: g_score[source] + self.system_distance(source, destination)}
|
||||
|
||||
while len(open):
|
||||
current = min([x for x in f_score.items() if x[0] in open], key=lambda x: x[1])[0]
|
||||
if current == destination:
|
||||
|
||||
def build_path(route, current):
|
||||
if current in route:
|
||||
p = build_path(route, route[current])
|
||||
p.append(current)
|
||||
return p
|
||||
return [current]
|
||||
|
||||
return build_path(route, destination)
|
||||
open.remove(current)
|
||||
closed.add(current)
|
||||
for neighbor, distance in self.neighbors_jump(current, range, hull, ship_class):
|
||||
neighbor_id = neighbor['system_id']
|
||||
if neighbor_id in closed or \
|
||||
neighbor['security'] >= 0.45 or \
|
||||
(station_only and not neighbor['station']) or \
|
||||
neighbor_id in avoid_systems:
|
||||
continue
|
||||
|
||||
score = g_score[current] + self.system_distance(current, neighbor_id)
|
||||
if neighbor_id not in open or score < g_score[neighbor_id]:
|
||||
route[neighbor_id] = current
|
||||
g_score[neighbor_id] = score
|
||||
f_score[neighbor_id] = score + self.system_distance(neighbor_id, destination)
|
||||
if neighbor_id not in open:
|
||||
open.add(neighbor_id)
|
||||
|
||||
def route_jump_distance(self, route):
|
||||
"""Calculate the total ly distance of a route"""
|
||||
source = route[0]
|
||||
ly = 0.0
|
||||
for destination in route[1:]:
|
||||
if destination == source:
|
||||
return ly
|
||||
ly += self.system_distance(source, destination)
|
||||
source = destination
|
||||
return ly
|
||||
|
||||
def route_jump_isotopes(self, route, jfc_skill, jf_skill=None, hull=None, ship_class=None):
|
||||
"""Calculate the total number of isotopes needed for a route"""
|
||||
if not hull and not ship_class:
|
||||
raise ValueError('No hull or ship class provided')
|
||||
if hull:
|
||||
ship_class = hull_classes[hull]
|
||||
if ship_class == 'jumpfreighter' and not jf_skill:
|
||||
raise ValueError('No Jump Freighter skill level provided for a jump freighter ship')
|
||||
|
||||
multi = 1 - (.1 * jfc_skill)
|
||||
if ship_class == 'jumpfreighter':
|
||||
multi = multi * (1 - (.1 * jf_skill))
|
||||
base = isotope_usage[ship_class] * multi
|
||||
ly = self.route_jump_distance(route)
|
||||
return round(ly * base, 0)
|
||||
|
||||
def neighbors_gate(self, system_id):
|
||||
"""List systems that are connected to a system by gates"""
|
||||
return self.neighbors(system_id)
|
||||
@@ -145,15 +245,24 @@ class Map(networkx.Graph):
|
||||
range = ship_class_to_range(ship_class, 5)
|
||||
else:
|
||||
raise ValueError('No range, hull, or ship class provided')
|
||||
|
||||
# Calculate the max coords for the jump radius, avoiding costly calc_distance calls
|
||||
range_x = (source['coords'][0] + (range * EVE_LY), source['coords'][0] - (range * EVE_LY))
|
||||
range_y = (source['coords'][1] + (range * EVE_LY), source['coords'][1] - (range * EVE_LY))
|
||||
range_z = (source['coords'][2] + (range * EVE_LY), source['coords'][2] - (range * EVE_LY))
|
||||
|
||||
destinations = []
|
||||
for destination_id, destination_data in self.nodes_iter(data=True):
|
||||
if destination_data['coords'][0] > range_x[0] or destination_data['coords'][0] < range_x[1] or \
|
||||
destination_data['coords'][1] > range_y[0] or destination_data['coords'][1] < range_y[1] or \
|
||||
destination_data['coords'][2] > range_z[0] or destination_data['coords'][2] < range_z[1]:
|
||||
continue
|
||||
distance = calc_distance(source['coords'], destination_data['coords'])
|
||||
if distance <= range and destination_id != system_id:
|
||||
destinations.append((destination_data, distance))
|
||||
return destinations
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
from sqlite3 import connect
|
||||
@@ -164,4 +273,4 @@ if __name__ == '__main__':
|
||||
m.from_sde(db_conn)
|
||||
print("Writing output")
|
||||
with open('output.json', 'wb') as f:
|
||||
f.write(m.to_json())
|
||||
f.write(m.to_json())
|
||||
|
||||
Reference in New Issue
Block a user