mirror of
https://github.com/nikdoof/vsphere-influxdb-go.git
synced 2025-12-21 22:49:23 +00:00
add vendoring with go dep
This commit is contained in:
177
vendor/github.com/influxdata/influxdb/stress/v2/README.md
generated
vendored
Normal file
177
vendor/github.com/influxdata/influxdb/stress/v2/README.md
generated
vendored
Normal file
@@ -0,0 +1,177 @@
|
||||
# Influx Stress Tool V2
|
||||
|
||||
```
|
||||
$ influx_stress -v2 -config iql/file.iql
|
||||
```
|
||||
|
||||
This stress tool works from list of InfluxQL-esque statements. The language has been extended to allow for some basic templating of fields, tags and measurements in both line protocol and query statements.
|
||||
|
||||
By default the test outputs a human readable report to `STDOUT` and records test statistics in an active installation of InfluxDB at `localhost:8086`.
|
||||
|
||||
To set state variables for the test such as the address of the Influx node use the following syntax:
|
||||
|
||||
```
|
||||
# The values listed below are the default values for each of the parameters
|
||||
|
||||
# Pipe delineated list of addresses. For cluster: [192.168.0.10:8086|192.168.0.2:8086|192.168.0.3:8086]
|
||||
# Queries and writes are round-robin to the configured addresses.
|
||||
SET Addresses [localhost:8086]
|
||||
|
||||
# False (default) uses http, true uses https
|
||||
SET SSL [false]
|
||||
|
||||
# Username for targeted influx server or cluster
|
||||
SET Username []
|
||||
|
||||
# Password for targeted influx server or cluster
|
||||
SET Password []
|
||||
|
||||
# Database to target for queries and writes. Works like the InfluxCLI USE
|
||||
SET Database [stress]
|
||||
|
||||
# Precision for the data being written
|
||||
# Only s and ns supported
|
||||
SET Precision [s]
|
||||
|
||||
# Date the first written point will be timestamped
|
||||
SET StartDate [2016-01-01]
|
||||
|
||||
# Size of batches to send to InfluxDB
|
||||
SET BatchSize [5000]
|
||||
|
||||
# Time to wait between sending batches
|
||||
SET WriteInterval [0s]
|
||||
|
||||
# Time to wait between sending queries
|
||||
SET QueryInterval [0s]
|
||||
|
||||
# Number of concurrent writers
|
||||
SET WriteConcurrency [15]
|
||||
|
||||
# Number of concurrent readers
|
||||
SET QueryConcurrency [5]
|
||||
```
|
||||
|
||||
The values in the example are also the defaults.
|
||||
|
||||
Valid line protocol will be forwarded right to the server making setting up your testing environment easy:
|
||||
|
||||
```
|
||||
CREATE DATABASE thing
|
||||
|
||||
ALTER RETENTION POLICY default ON thing DURATION 1h REPLICATION 1
|
||||
|
||||
SET database [thing]
|
||||
```
|
||||
|
||||
You can write points like this:
|
||||
```
|
||||
INSERT mockCpu
|
||||
cpu,
|
||||
host=server-[int inc(0) 10000],location=[string rand(8) 1000]
|
||||
value=[float rand(1000) 0]
|
||||
100000 10s
|
||||
|
||||
Explained:
|
||||
|
||||
# INSERT keyword kicks off the statement, next to it is the name of the statement for reporting and templated query generation
|
||||
INSERT mockCpu
|
||||
# Measurement
|
||||
cpu,
|
||||
# Tags - separated by commas. Tag values can be templates, mixed template and fixed values
|
||||
host=server-[float rand(100) 10000],location=[int inc(0) 1000],fixed=[fix|fid|dor|pom|another_tag_value]
|
||||
# Fields - separated by commas either templates, mixed template and fixed values
|
||||
value=[float inc(0) 0]
|
||||
# 'Timestamp' - Number of points to insert into this measurement and the amount of time between points
|
||||
100000 10s
|
||||
```
|
||||
|
||||
Each template contains 3 parts: a datatype (`str`, `float`, or `int`) a function which describes how the value changes between points: `inc(0)` is increasing and `rand(n)` is a random number between `0` and `n`. The last number is the number of unique values in the tag or field. `0` is unbounded. To make a tag
|
||||
|
||||
To run multiple insert statements at once:
|
||||
```
|
||||
GO INSERT devices
|
||||
devices,
|
||||
city=[str rand(8) 10],country=[str rand(8) 25],device_id=[str rand(10) 1000]
|
||||
lat=[float rand(90) 0],lng=[float rand(120) 0],temp=[float rand(40) 0]
|
||||
10000000 10s
|
||||
|
||||
GO INSERT devices2
|
||||
devices2,
|
||||
city=[str rand(8) 10],country=[str rand(8) 25],device_id=[str rand(10) 1000]
|
||||
lat=[float rand(90) 0],lng=[float rand(120) 0],temp=[float rand(40) 0]
|
||||
10000000 10s
|
||||
|
||||
WAIT
|
||||
```
|
||||
|
||||
Fastest point generation and write load requires 3-4 running `GO INSERT` statements at a time.
|
||||
|
||||
You can run queries like this:
|
||||
|
||||
```
|
||||
QUERY cpu
|
||||
SELECT mean(value) FROM cpu WHERE host='server-1'
|
||||
DO 1000
|
||||
```
|
||||
|
||||
### Output:
|
||||
Output for config file in this repo:
|
||||
```
|
||||
[√] "CREATE DATABASE thing" -> 1.806785ms
|
||||
[√] "CREATE DATABASE thing2" -> 1.492504ms
|
||||
SET Database = 'thing'
|
||||
SET Precision = 's'
|
||||
Go Write Statement: mockCpu
|
||||
Points/Sec: 245997
|
||||
Resp Time Average: 173.354445ms
|
||||
Resp Time Standard Deviation: 123.80344ms
|
||||
95th Percentile Write Response: 381.363503ms
|
||||
Average Request Bytes: 276110
|
||||
Successful Write Reqs: 20
|
||||
Retries: 0
|
||||
Go Query Statement: mockCpu
|
||||
Resp Time Average: 3.140803ms
|
||||
Resp Time Standard Deviation: 2.292328ms
|
||||
95th Percentile Read Response: 5.915437ms
|
||||
Query Resp Bytes Average: 16 bytes
|
||||
Successful Queries: 10
|
||||
WAIT -> 406.400059ms
|
||||
SET DATABASE = 'thing2'
|
||||
Go Write Statement: devices
|
||||
Points/Sec: 163348
|
||||
Resp Time Average: 132.553789ms
|
||||
Resp Time Standard Deviation: 149.397972ms
|
||||
95th Percentile Write Response: 567.987467ms
|
||||
Average Request Bytes: 459999
|
||||
Successful Write Reqs: 20
|
||||
Retries: 0
|
||||
Go Write Statement: devices2
|
||||
Points/Sec: 160078
|
||||
Resp Time Average: 133.303097ms
|
||||
Resp Time Standard Deviation: 144.352404ms
|
||||
95th Percentile Write Response: 560.565066ms
|
||||
Average Request Bytes: 464999
|
||||
Successful Write Reqs: 20
|
||||
Retries: 0
|
||||
Go Query Statement: fooName
|
||||
Resp Time Average: 1.3307ms
|
||||
Resp Time Standard Deviation: 640.249µs
|
||||
95th Percentile Read Response: 2.668ms
|
||||
Query Resp Bytes Average: 16 bytes
|
||||
Successful Queries: 10
|
||||
WAIT -> 624.585319ms
|
||||
[√] "DROP DATABASE thing" -> 991.088464ms
|
||||
[√] "DROP DATABASE thing2" -> 421.362831ms
|
||||
```
|
||||
|
||||
### Next Steps:
|
||||
|
||||
##### Documentation
|
||||
- Parser behavior and proper `.iql` syntax
|
||||
- How the templated query generation works
|
||||
- Collection of tested `.iql` files to simulate different loads
|
||||
|
||||
##### Performance
|
||||
- `Commune`, a stuct to enable templated Query generation, is blocking writes when used, look into performance.
|
||||
- Templated query generation is currently in a quazi-working state. See the above point.
|
||||
Reference in New Issue
Block a user